Step 1: Rewrite the given differential equation:2(y+2)loge(y+2)dx+(x+4−2loge(y+2))dy=0
Step 2: Separate the variables:x+4−2loge(y+2)2(y+2)loge(y+2)dx=−dy
Step 3: Integrate both sides:∫x+4−2loge(y+2)2(y+2)loge(y+2)dx=−∫dy
Step 4: Use the initial condition x(e4−2)=1 to find the constant of integration.
Step 5: Solve for the particular solution using the initial condition.
Step 6: Evaluate the particular solution at y=e9−2 to find x(e9−2).
Final Answer: C. $\frac{32}{9}$
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to