Step 1: Rewrite the given differential equation:2(y+2)loge(y+2)dx+(x+4−2loge(y+2))dy=0
Step 2: Separate the variables:x+4−2loge(y+2)2(y+2)loge(y+2)dx=−dy
Step 3: Integrate both sides:∫x+4−2loge(y+2)2(y+2)loge(y+2)dx=−∫dy
Step 4: Use the initial condition x(e4−2)=1 to find the constant of integration.
Step 5: Solve for the particular solution using the initial condition.
Step 6: Evaluate the particular solution at y=e9−2 to find x(e9−2).
Final Answer: C. $\frac{32}{9}$