Step 1: Rewrite the given differential equation:2(y+2)loge(y+2)dx+(x+4−2loge(y+2))dy=0
Step 2: Separate the variables:x+4−2loge(y+2)2(y+2)loge(y+2)dx=−dy
Step 3: Integrate both sides:∫x+4−2loge(y+2)2(y+2)loge(y+2)dx=−∫dy
Step 4: Use the initial condition x(e4−2)=1 to find the constant of integration.
Step 5: Solve for the particular solution using the initial condition.
Step 6: Evaluate the particular solution at y=e9−2 to find x(e9−2).
Final Answer: C. $\frac{32}{9}$
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 