Step 1: Expand \( (1 + x)^p(1 - x)^q \) The expansion of \( (1 + x)^p \) and \( (1 - x)^q \) is given by: \[ (1 + x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \dots \] \[ (1 - x)^q = 1 - qx + \frac{q(q-1)}{2!}x^2 - \dots \] Step 2: Multiply the expansions Now, multiply the two expansions: \[ (1 + x)^p(1 - x)^q = \left( 1 + px + \frac{p(p-1)}{2!}x^2 + \dots \right) \times \left( 1 - qx + \frac{q(q-1)}{2!}x^2 - \dots \right) \] To get the coefficient of \( x \), we need to add the product of terms that result in \( x \): \[ \text{Coefficient of } x = p - q \] Similarly, for \( x^2 \): \[ \text{Coefficient of } x^2 = \frac{p(p-1)}{2!} + \frac{q(q-1)}{2!} \] Step 3: Using given values We are given that the coefficients of \( x \) and \( x^2 \) are 4 and -5, respectively: \[ p - q = 4 \quad \text{(1)} \] \[ \frac{p(p-1)}{2!} + \frac{q(q-1)}{2!} = -5 \quad \text{(2)} \] Step 4: Solving the system of equations From equation (1): \[ p = q + 4 \] Substitute \( p = q + 4 \) into equation (2): \[ \frac{(q + 4)(q + 3)}{2} + \frac{q(q - 1)}{2} = -5 \] Solving this yields \( p = 15 \) and \( q = 11 \).
Step 5: Calculate \( 2p + 3q \) Now, we calculate: \[ 2p + 3q = 2(15) + 3(11) = 30 + 33 = 63 \] Thus, \( 2p + 3q = 63 \).
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.