(A) I$_2$ (g) $\rightarrow$ 2I (g) is an endothermic process (Atomisation).
(B) HCl (g) $\rightarrow$ H (g) + Cl (g) is an endothermic process (Atomisation).
(C) H$_2$O (l) $\rightarrow$ H$_2$O (g) is an endothermic process (Vaporisation).
(D) C (s) + O$_2$ (g) $\rightarrow$ CO$_2$ (g) is an exothermic process (Combustion).
(E) Dissolution of ammonium chloride in water is an endothermic process (Dissolution).
Thus, the number of endothermic processes is 4.

Consider that specific heat (0 to \(50~^\circ\mathrm{C}\)) of water, water vapour and air remains constant: \(4.48\), \(1.88\) and \(1.0~\mathrm{kJ/(kg\^\circ C)}\), respectively. Assuming the heat energy required to convert \(1~\mathrm{kg}\) of water to water vapour at \(0~^\circ\mathrm{C}\) is \(2000~\mathrm{kJ}\), the enthalpy (in kJ/kg dry air) of atmospheric air containing \(0.05~\mathrm{kg}\) water vapour per kg dry air at \(50~^\circ\mathrm{C}\) is ________. (rounded off to 1 decimal place)
In hot weather, a human body cools by evaporation of sweat. The amount of water that must evaporate to cool the body by \(1~^\circ\mathrm{C}\) is __________________________% of the body mass. (Round off to two decimal places)
[Given: latent heat of vaporization of water \(L_v=2.25\times10^6~\mathrm{J\,kg^{-1}}\); specific heat capacities of body and water \(c=4.2\times10^3~\mathrm{J\,kg^{-1}\,K^{-1}}\).]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: