An aqueous solution of volume 300 cm3 contains 0.63 g of protein. The osmotic pressure of the solution at 300 K is 1.29 mbar. The molar mass of the protein is ____ g mol–1. Given: R = 0.083 L bar K–1 mol–1
Given:
Volume (V) = 300 cm³ = 0.3 L
Mass (m) = 0.63 g
Osmotic pressure ($\pi$) = 1.29 mbar = 1.29 × 10⁻³ bar
Temperature (T) = 300 K
R = 0.083 L bar K⁻¹ mol⁻¹
Using the formula: $\pi = cRT$, where c is the molarity.
Calculate molarity (c):
$$c = \frac{\pi}{RT} = \frac{1.29 \times 10^{-3} \text{ bar}}{0.083 \text{ L bar K}^{-1} \text{mol}^{-1} \times 300 \text{ K}}$$
$$c \approx 5.18 \times 10^{-5} \text{ mol/L}$$
Calculate moles (n):
$$n = c \times V = 5.18 \times 10^{-5} \text{ mol/L} \times 0.3 \text{ L}$$
$$n \approx 1.554 \times 10^{-5} \text{ mol}$$
Calculate molar mass (M):
$$M = \frac{m}{n} = \frac{0.63 \text{ g}}{1.554 \times 10^{-5} \text{ mol}}$$
$$M \approx 40540 \text{ g/mol}$$
The molar mass of the protein is approximately 40540 g/mol.