First, we analyze the behavior of each term in the product. The smallest term in the product is: \[ \frac{1}{2^2 - 2^3} \quad \text{and the largest term is} \quad \frac{1}{2^2 - 2^{2n+1}} \] The product is bounded as: \[ \left( \frac{1}{2^2 - 2^3} \right)^n \leq P \leq \left( \frac{1}{2^2 - 2^{2n+1}} \right)^n \] The sequence is bounded between 0 and 1. Therefore, the limit of the product as \( n \to \infty \) is 0. Thus, the final answer is: \[ P = 0 \]
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: