>
MHT CET
>
Mathematics
List of top Mathematics Questions asked in MHT CET
The area bounded by the parabola \( x^2 = 4y \), the lines \( y = 2 \), \( y = 4 \) and the Y-axis is
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If \( y = e^{4x}\cos 5x \), then find \( \dfrac{d^2y}{dx^2} \) at \( x = 0 \).
MHT CET - 2020
MHT CET
Mathematics
Differentiation
The joint equation of the pair of lines passing through the point of intersection of the lines
\[ 2x^2 - xy - 15y^2 - 7x + 32y - 9 = 0 \]
and parallel to the coordinate axes is
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
The coordinates of the foci of the ellipse \( 16x^2 + 9y^2 = 144 \) are
MHT CET - 2020
MHT CET
Mathematics
Conic sections
A tangent to the curve \( x = at^2,\; y = 2at \) is perpendicular to the X-axis. Then the point of contact is
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
If \( P(A') = 0.6 \), \( P(B) = 0.8 \) and \( P(B|A) = 0.3 \), then find \( P(A|B) \).
MHT CET - 2020
MHT CET
Mathematics
Probability
Evaluate the integral
\[ \int \frac{\sec x}{\sqrt{\log(\sec x + \tan x)}}\, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
With usual notations, in \( \triangle ABC \), if \( b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2} = \frac{3a}{2} \), then
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
The L.P.P. to maximize \( z = x + y \), subject to
\[ x + y \le 30,\; x \le 15,\; y \le 20,\; x + y \ge 15,\; x \ge 0,\; y \ge 0 \]
has
MHT CET - 2020
MHT CET
Mathematics
Linear Programming
Evaluate the integral
\[ \int_{0}^{\pi/2} \frac{\sin^{\frac{2}{3}} x}{\sin^{\frac{2}{3}} x + \cos^{\frac{2}{3}} x}\, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that
\[ f(x) = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}, \]
then \( f \) is
MHT CET - 2020
MHT CET
Mathematics
Functions
The dual of the statement pattern \( \sim p \land (q \lor t) \) is (where \( t \) is a tautology and \( c \) is a contradiction)
MHT CET - 2020
MHT CET
Mathematics
mathematical reasoning
Evaluate:
\[ \cos x \cos 7x - \cos 5x \cos 13x \]
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
Given below is the probability distribution of a discrete random variable \( X \):
\[ \begin{array}{c|cccccc} X=x & 1 & 2 & 3 & 4 & 5 & 6
\hline P(X=x) & k & 0 & 2k & 5k & k & 3k \end{array} \]
Then find \( P(X \ge 4) \).
MHT CET - 2020
MHT CET
Mathematics
Probability
If \( \tan \theta = \dfrac{1}{3} \), then find \( \cos 2\theta \).
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
The equation of the line passing through the point \( (2, 3, -4) \) and perpendicular to the XOZ plane is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
If \( \tan^{-1}\!\left(\dfrac{1-x}{1+x}\right) - \dfrac{1
{2}\tan^{-1}x = 0 \), for \( x>0 \), then the value of \( x \) is}
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
In \( \triangle ABC \) with usual notations, \( a = 4 \), \( b = 3 \), \( \angle A = 60^\circ \), then \( c \) is a root of the equation
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
If the vectors \( \vec{a} = \hat{i} - 2\hat{j} + \hat{k} \), \( \vec{b} = 2\hat{i} - 5\hat{j} + p\hat{k} \) and \( \vec{c} = 5\hat{i} - 9\hat{j} + 4\hat{k} \) are coplanar, then the value of \( p \) is
MHT CET - 2020
MHT CET
Mathematics
Vectors
If the function \( f \) defined by
\[ f(x) = \begin{cases} K(x - x^2), & 0<x<1
0, & \text{otherwise} \end{cases} \]
is the p.d.f. of a random variable \( X \), then the value of \( P(X<\tfrac{1}{2}) \) is
MHT CET - 2020
MHT CET
Mathematics
Probability
For a sequence if \( S_n = \dfrac{5^n - 2^n}{2^n} \), then its fourth term is
MHT CET - 2020
MHT CET
Mathematics
sequences
Evaluate the integral:
\[ \int_{-a}^{a} x^2 \left( \frac{e^{x^3} - e^{-x^3}}{e^{x^3} + e^{-x^3}} \right) dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If \( f : \mathbb{R} \rightarrow \mathbb{R} \), \( g : \mathbb{R} \rightarrow \mathbb{R} \) are two functions defined by \( f(x) = 2x - 3 \), \( g(x) = x^3 + 5 \), then find \( (f \circ g)^{-1
(x) \).}
MHT CET - 2020
MHT CET
Mathematics
Functions
The probability that a person who undergoes a certain operation will survive is 0.2. If 5 patients undergo similar operations, find the probability that exactly four will survive.
MHT CET - 2020
MHT CET
Mathematics
Probability
The shortest distance between the lines
\[ \vec{r} = (1 - t)\hat{i} + (t - 2)\hat{j} + (3 - 2t)\hat{k} \]
and
\[ \vec{r} = (p + 1)\hat{i} + (2p - 1)\hat{j} + (2p + 1)\hat{k} \]
is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
Prev
1
...
19
20
21
22
23
...
40
Next