If the function \( f \) defined by
\[
f(x) =
\begin{cases}
K(x - x^2), & 0<x<1
0, & \text{otherwise}
\end{cases}
\]
is the p.d.f. of a random variable \( X \), then the value of \( P(X<\tfrac{1}{2}) \) is
Show Hint
Always determine the constant in a p.d.f. first using the total probability condition before evaluating probabilities.
Step 1: Use the property of probability density function.
Since \( f(x) \) is a p.d.f.,
\[
\int_{0}^{1} K(x - x^2)\,dx = 1
\]
Step 2: Find the value of \( K \).
\[
K \int_{0}^{1} (x - x^2)\,dx = K \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1
\]
\[
K \left( \frac{1}{2} - \frac{1}{3} \right) = K \left( \frac{1}{6} \right) = 1
\]
\[
K = 6
\]