Step 1: Write the ellipse in standard form.
\[
16x^2 + 9y^2 = 144
\Rightarrow \frac{x^2}{9} + \frac{y^2}{16} = 1
\]
Step 2: Identify major and minor axes.
Here,
\[
a^2 = 16,\quad b^2 = 9
\]
Since \( a^2>b^2 \) and is under \( y^2 \), the major axis is along the y-axis.
Step 3: Find \( c^2 \).
\[
c^2 = a^2 - b^2 = 16 - 9 = 7
\Rightarrow c = \sqrt{7}
\]
Step 4: Write the foci.
\[
\text{Foci} = (0, \pm c) = (0, \pm \sqrt{7})
\]
Step 5: Conclusion.
\[
\boxed{(0, \pm \sqrt{7})}
\]