Question:

If \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \[ f(x) = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}, \] then \( f \) is

Show Hint

To test whether a function is even or odd, always compute \( f(-x) \) and compare it with \( f(x) \).
Updated On: Jan 30, 2026
  • a periodic function
  • an even function
  • an odd function
  • neither even nor odd function
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Replace \( x \) by \( -x \) in \( f(x) \).
\[ f(-x) = \frac{e^{-x} + e^{x}}{e^{-x} - e^{x}} \]

Step 2: Simplify the expression.
\[ f(-x) = \frac{e^{x} + e^{-x}}{-(e^{x} - e^{-x})} = -\frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} \]

Step 3: Compare \( f(-x) \) with \( f(x) \).
\[ f(-x) = -f(x) \]

Step 4: Conclusion.
Since \( f(-x) = -f(x) \), the function is an odd function.
Was this answer helpful?
0
0

Top Questions on Functions

View More Questions