Step 1: Use the property of definite integrals.
Let
\[
I = \int_{0}^{\pi/2} \frac{\sin^{\frac{2}{3}} x}{\sin^{\frac{2}{3}} x + \cos^{\frac{2}{3}} x}\, dx
\]
Using the property \( I = \int_{0}^{\pi/2} f(x)\,dx = \int_{0}^{\pi/2} f\!\left(\frac{\pi}{2}-x\right)\,dx \).
Step 2: Replace \( x \) by \( \frac{\pi}{2} - x \).
\[
I = \int_{0}^{\pi/2} \frac{\cos^{\frac{2}{3}} x}{\sin^{\frac{2}{3}} x + \cos^{\frac{2}{3}} x}\, dx
\]
Step 3: Add both expressions.
\[
2I = \int_{0}^{\pi/2} 1 \, dx
\]
\[
2I = \frac{\pi}{2}
\]
Step 4: Conclusion.
\[
I = \boxed{\frac{\pi}{4}}
\]