>
Exams
>
Mathematics
>
Trigonometry
>
evaluate cos x cos 7x cos 5x cos 13x
Question:
Evaluate:
\[ \cos x \cos 7x - \cos 5x \cos 13x \]
Show Hint
Always convert products of trigonometric functions into sums before simplifying complex expressions.
MHT CET - 2020
MHT CET
Updated On:
Jan 30, 2026
\( 2\cos^2 6x \cos 12x \)
\( 2\sin^2 6x \cos 6x \)
\( 2\sin 6x \sin 12x \)
\( 2\sin 6x \cos 12x \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1: Use the product-to-sum identity.
\[ \cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)] \]
Step 2: Apply the identity to each term.
\[ \cos x \cos 7x = \frac{1}{2}[\cos 8x + \cos 6x] \] \[ \cos 5x \cos 13x = \frac{1}{2}[\cos 18x + \cos 8x] \]
Step 3: Subtract the expressions.
\[ \cos x \cos 7x - \cos 5x \cos 13x \] \[ = \frac{1}{2}(\cos 8x + \cos 6x - \cos 18x - \cos 8x) \] \[ = \frac{1}{2}(\cos 6x - \cos 18x) \]
Step 4: Use the identity for difference of cosines.
\[ \cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2} \] \[ = -2\sin 12x \sin(-6x) \] \[ = 2\sin 12x \sin 6x \]
Step 5: Simplify the expression.
\[ 2\sin 6x \sin 12x = 2\sin^2 6x \cos 6x \]
Step 6: Conclusion.
\[ \boxed{2\sin^2 6x \cos 6x} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
Let \(m\) and \(n\) be non–negative integers such that for \[ x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),\qquad \tan x+\sin x=m,\quad \tan x-\sin x=n. \] Then the possible ordered pair \((m,n)\) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \(\tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{2}{3} \right) + \tan \left( \frac{\pi}{4} - \frac{1}{2} \sin^{-1} \frac{2}{3} \right) = k\). Then number of solution of the equation \(\sin^{-1}(kx - 1) = \sin x - \cos^{-1} x\) is/are :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
In \(\Delta ABC\) if \(\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1\) where \(A, B, C \in (0, \frac{\pi}{2})\) then
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{\sin(2x) - 2\sin x}{x^3} \]
JEE Main - 2026
Mathematics
Trigonometry
View Solution
The value of \( \csc 10^\circ - \sqrt{3}\sec 10^\circ \) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in MHT CET exam
Which of the following is not a function of sperm?
MHT CET - 2025
The Male Reproductive System
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
View More Questions