If the vectors \( \vec{a} = \hat{i} - 2\hat{j} + \hat{k} \),
\( \vec{b} = 2\hat{i} - 5\hat{j} + p\hat{k} \) and
\( \vec{c} = 5\hat{i} - 9\hat{j} + 4\hat{k} \) are coplanar, then the value of \( p \) is
Show Hint
For coplanar vectors, always equate the scalar triple product to zero.
Step 1: Use the condition for coplanarity.
Three vectors are coplanar if the scalar triple product is zero:
\[
\vec{a} \cdot (\vec{b} \times \vec{c}) = 0
\]
Step 2: Form the determinant.
\[
\begin{vmatrix}
1 & -2 & 1 \\
2 & -5 & p \\
5 & -9 & 4
\end{vmatrix} = 0
\]