Step 1: Use half-angle identities.
\[
\cos^2\frac{B}{2} = \frac{s(s-b)}{ac}, \qquad
\cos^2\frac{C}{2} = \frac{s(s-c)}{ab}
\]
where \( s = \frac{a+b+c}{2} \).
Step 2: Substitute in the given expression.
\[
b\cdot\frac{s(s-c)}{ab} + c\cdot\frac{s(s-b)}{ac} = \frac{3a}{2}
\]
\[
\frac{s}{a}[(s-c)+(s-b)] = \frac{3a}{2}
\]
Step 3: Simplify.
\[
\frac{s}{a}(2s-b-c) = \frac{3a}{2}
\]
But \( 2s = a+b+c \), hence
\[
\frac{s}{a}\,a = \frac{3a}{2}
\Rightarrow s = \frac{3a}{2}
\]
Step 4: Conclude the relation among sides.
\[
\frac{a+b+c}{2} = \frac{3a}{2} \Rightarrow b+c = 2a
\]
Thus, \( b, a, c \) are in arithmetic progression.