Step 1: Identify the nature of the function.
Consider the integrand
\[
f(x) = x^2 \left( \frac{e^{x^3} - e^{-x^3}}{e^{x^3} + e^{-x^3}} \right)
\]
Here, \( x^2 \) is an even function, while
\[
\frac{e^{x^3} - e^{-x^3}}{e^{x^3} + e^{-x^3}}
\]
is an odd function because replacing \( x \) by \( -x \) changes the sign of the numerator but not the denominator.
Step 2: Determine the parity of the integrand.
The product of an even function and an odd function is an odd function.
Hence, \( f(x) \) is an odd function.
Step 3: Use the property of definite integrals.
For any odd function \( f(x) \),
\[
\int_{-a}^{a} f(x)\,dx = 0
\]
Therefore,
\[
\int_{-a}^{a} x^2 \left( \frac{e^{x^3} - e^{-x^3}}{e^{x^3} + e^{-x^3}} \right) dx = 0
\]
Step 4: Final conclusion.
Using the symmetry property of odd functions over symmetric limits, the value of the given integral is zero.