>
Exams
>
Mathematics
>
Trigonometry
>
if tan 1 left dfrac 1 x 1 x right dfrac 1 2 tan 1
Question:
If \( \tan^{-1}\!\left(\dfrac{1-x}{1+x}\right) - \dfrac{1
{2}\tan^{-1}x = 0 \), for \( x>0 \), then the value of \( x \) is}
Show Hint
Inverse trigonometric equations can often be simplified using standard angle identities before solving.
MHT CET - 2020
MHT CET
Updated On:
Jan 30, 2026
\( \sqrt{3} \)
\( \dfrac{1}{\sqrt{2}} \)
\( \dfrac{1}{\sqrt{3}} \)
\( \dfrac{1}{3} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Rewrite the given equation.
\[ \tan^{-1}\!\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x \]
Step 2: Use the identity for inverse tangent.
For \( x>0 \), \[ \tan^{-1}\!\left(\frac{1-x}{1+x}\right) = \frac{\pi}{4} - \tan^{-1}x \]
Step 3: Substitute and simplify.
\[ \frac{\pi}{4} - \tan^{-1}x = \frac{1}{2}\tan^{-1}x \] \[ \frac{\pi}{4} = \frac{3}{2}\tan^{-1}x \] \[ \tan^{-1}x = \frac{\pi}{6} \]
Step 4: Find the value of \( x \).
\[ x = \tan\frac{\pi}{6} = \frac{1}{\sqrt{3}} \]
Step 5: Conclusion.
The required value of \( x \) is \[ \boxed{\dfrac{1}{\sqrt{3}}} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
Let \(m\) and \(n\) be non–negative integers such that for \[ x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),\qquad \tan x+\sin x=m,\quad \tan x-\sin x=n. \] Then the possible ordered pair \((m,n)\) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \(\tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{2}{3} \right) + \tan \left( \frac{\pi}{4} - \frac{1}{2} \sin^{-1} \frac{2}{3} \right) = k\). Then number of solution of the equation \(\sin^{-1}(kx - 1) = \sin x - \cos^{-1} x\) is/are :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
In \(\Delta ABC\) if \(\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1\) where \(A, B, C \in (0, \frac{\pi}{2})\) then
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{\sin(2x) - 2\sin x}{x^3} \]
JEE Main - 2026
Mathematics
Trigonometry
View Solution
The value of \( \csc 10^\circ - \sqrt{3}\sec 10^\circ \) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in MHT CET exam
Which of the following is not a function of sperm?
MHT CET - 2025
The Male Reproductive System
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
View More Questions