Let \( f : [0,3] \to \mathbb{R} \) be defined by \[ f(x) = \begin{cases} 0, & 0 \leq x < 1, \\ e^{x^2} - e, & 1 \leq x < 2, \\ e^{x^2} + 1, & 2 \leq x \leq 3. \end{cases} \] Now, define \( F : [0, 3] \to \mathbb{R} \) by \[ F(0) = 0 \,\,\text{and}\,\, F(x) = \int_0^x f(t) \, dt, \text{ for } 0 < x \leq 3. \] Then