Step 1: Understanding the sine function and its inverse.
The sine function \( y = \sin x \) is defined from \( \mathbb{R} \) to \( [-1, 1] \), but it is neither one-one nor onto over \( \mathbb{R} \).
By restricting the domain, the inverse \( \sin^{-1}x \) can be defined.
Step 2: Answering the given questions.
(i) Interval other than the principal value branch:
The principal value branch is the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \).
Another interval where sine is one-one and onto is:
\[
\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]
\]
(ii) Evaluating \( \sin^{-1}\left(-\frac{1}{2}\right) - \sin^{-1(1) \):}
\[
\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}, \quad \sin^{-1}(1) = \frac{\pi}{2}
\]
\[
\sin^{-1}\left(-\frac{1}{2}\right) - \sin^{-1}(1) = -\frac{\pi}{6} - \frac{\pi}{2} = -\frac{2\pi}{3}
\]
(iii) (a) Graph of \( \sin^{-1} x \):
The graph of \( \sin^{-1} x \) is obtained by reflecting \( y = \sin x \) across the line \( y = x \).
(iii) (b) Domain and range of \( f(x) = 2 \sin^{-1(1 - x) \):}
For \( \sin^{-1}(1 - x) \) to be defined:
\[
-1 \leq 1 - x \leq 1 \quad \Rightarrow \quad 0 \leq x \leq 2
\]
Thus, the domain is \( [0, 2] \).
Since \( \sin^{-1}(x) \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \),
\[
f(x) \in \left[-\pi, \pi \right]
\]
Final Answers:
\begin{enumerate}
Example interval: \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \).
\( \sin^{-1}\left(-\frac{1}{2}\right) - \sin^{-1}(1) = -\frac{2\pi}{3} \).
(a) Graph is shown above.
(b) Domain: \( [0, 2] \), Range: \( [-\pi, \pi] \).
\end{enumerate}