Factorise each of the following:
(i) 27y 3 + 125z 3
(ii) 64m3 – 343n 3
[ Hint : See Question 9. ]
(i) 27 y3 + 125 z3
= (3y)3 + (5z)3
= (3y + 5z) [(3y)2 + (5z)2 - (3y)(5z) ] [∵ a3 + b3 ]
= (a + b) (a2 + b2 - ab)
= (3y + 5z) [9y2 + 25z2 - 15yz]
(ii) 64m3 - 343n3
= (4m)3 - (7n)3
= (4m - 7n)[ (4m)2 + (7n)2 + (4m) (7n) ] [∵ a3 - b3 = (a - b) (a2 + b2 + 2ab) ]
= (4m - 7n) [16m2 + 49n2 + 28mn ]
If \( x = \left( 2 + \sqrt{3} \right)^3 + \left( 2 - \sqrt{3} \right)^{-3} \) and \( x^3 - 3x + k = 0 \), then the value of \( k \) is:
Section | Number of girls per thousand boys |
|---|---|
Scheduled Caste (SC) | 940 |
Scheduled Tribe (ST) | 970 |
Non-SC/ST | 920 |
Backward districts | 950 |
Non-backward districts | 920 |
Rural | 930 |
Urban | 910 |
(i) Represent the information above by a bar graph.
(ii) In the classroom discuss what conclusions can be arrived at from the graph.
