>
Mathematics
List of top Mathematics Questions
The three distinct points
$ A(at_{1}^{2},\,2a{{t}_{1}}),\,\,B(at_{2}^{2},\,\,2a{{t}_{2}}) $
and
$ C(0,\,a) $
(where
$a$
is a real number) are collinear, if
JKCET - 2011
JKCET
Mathematics
Determinants
The value of
$k$
for which the equation
$ {{x}^{2}}-4xy-{{y}^{2}}+6x+2y+k=0 $
represents a pair of straight lines is
JKCET - 2011
JKCET
Mathematics
Straight lines
The equation of the line parallel to x-axis and tangent to the curve $ y=\frac{1}{{{x}^{2}}+2x+5} $ is
KEAM - 2011
KEAM
Mathematics
Application of derivatives
The value of
$ \cos \frac{\pi }{7}.\,\cos \frac{2\pi }{7}.\,\cos \frac{4\pi }{7} $
is equal to
JKCET - 2011
JKCET
Mathematics
Trigonometric Functions
$G = \left\{\begin{bmatrix} x&x \\[0.3em] x & x \end{bmatrix} , x \text{ is a nonzero real number} \right\}
$ is a group with respect to matrix multiplication. In this group, the inverse of $
\begin{bmatrix} \frac{1}{3} &\frac{1}{3} \\[0.3em] \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ is
KCET - 2011
KCET
Mathematics
Matrices
$\begin{vmatrix} {Sin \alpha}&{ \cos\alpha} &Sin ({\alpha+ \delta })\\ {Sin \beta}&{ Cos \beta}& Sin ({\beta+\delta}) \\ {Sin \gamma}&{ Cos \gamma}&Sin ({\gamma+\delta})\\ \end{vmatrix} $ is equal to
KCET - 2011
KCET
Mathematics
Properties of Determinants
Suppose
$ P(2,\,y,\,z) $
lies on the line through
$ A(3,-1,4) $
and
$ B(-4,2,1) $
. Then, the value of z is equal to
KCET - 2011
KCET
Mathematics
Various Forms of the Equation of a Line
In
$n$
is an odd positive integer and
$(1+x +x^2 +x^3)^n =\displaystyle\sum_{r=0}^{3n} a_rx^r$
then
$a_0 -a_1+a_2-a_3 +\dots -a_{3n}$
is equal to
KCET - 2011
KCET
Mathematics
Binomial theorem
Angles of elevation of the top of a tower from three points (collinear)
$A, B$
and
$ C$
on a road leading to the foot of the tower are
$30^\circ$
,
$45^\circ$
and
$60^\circ$
respectively. The ratio of
$AB$
to
$BC$
is
KCET - 2011
KCET
Mathematics
Trigonometric Functions
The derivative of
$tan ^{-1}[\frac{Sin x}{1+ Cos x}]$
with respect to
$tan^{-1}[\frac{Cos x}{1+Sin x}]$
is
KCET - 2011
KCET
Mathematics
Differentiability
The value of
$\left| \frac{1+ i \sqrt{3}}{\left( 1 + \frac{1}{i+1}\right)^2} \right|$
is
KCET - 2011
KCET
Mathematics
Algebra of Complex Numbers
The sum of the first n terms
$ \frac {1^2}{1} +\frac {1^2+2^2}{1+2}+ \frac {1^2 +2^2+3^2}{1+2+3}+$
$\dots$
is
KCET - 2011
KCET
Mathematics
Sequence and series
If the focii of
$\frac {x^2}{16}+\frac{y^2}{4}=1 $
and
$\frac {x^2}{a^2}-\frac{y^2}{3}=1 $
coincide, then value of
$a$
is
KCET - 2011
KCET
Mathematics
Conic sections
If
$\alpha , \beta ,\gamma$
are the roots of
$x^3-2x+1=0$
, then the value of
$(\sum \frac {1} {\alpha +\beta -\gamma}$
) is
KCET - 2011
KCET
Mathematics
Complex Numbers and Quadratic Equations
Locus of a point which moves such that its distance from the
$X-axis$
is twice its distance from the line
$x - y = 0$
is
KCET - 2011
KCET
Mathematics
Straight lines
If
$x = 2y + 3$
is a focal chord of the ellipse with eccentricity 3/4, then the lengths of the major and minor axes are
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Conic sections
If
$\cos^{-1} x +\cos^{-1} y +\cos^{-1}z = 3\pi $
, then
$xy + yz + zx$
is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
$1 + 3 + 5 + 7 + ... + 29 + 30 +31 + 32 + ... + 60 =$
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Sequence and series
If
$y =\frac{\sec x +\tan x}{\sec x - \tan x} $
, then
$\frac{dy}{dx} = $
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Continuity and differentiability
$\frac{1}{\sin\theta}- \frac{\sqrt{3}}{\cos \theta}=$
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Trigonometric Functions
Let [ ?] denote the greatest integer function and
$f (x) = [\tan^2 x]$
. Then
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Statistics
The sum of all the positive divisors less than $250$ of the number $484$ is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Arithmetic Progression
$\lim_{x\to\infty} x^{\frac{1}{x}} = $
COMEDK UGET - 2011
COMEDK UGET
Mathematics
limits and derivatives
If
$f\left(x\right) = \frac{x^{2} -1}{x^{2} +1} ,x\in R$
then the minimum value of
$f$
is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Application of derivatives
The area of the parallelogram with
$\vec{a}$
and
$\vec{b}$
as adjacent sides is
$20\, s \,units$
. Then the area of the parallelogram having
$7\vec{a} + 5\vec{b}$
and
$8\vec{a} + 11\vec{b}$
as adjacent sides is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Product of Two Vectors
Prev
1
...
696
697
698
699
700
...
982
Next