(Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines. There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
(i) how many cross - streets can be referred to as (4, 3).
(ii) how many cross - streets can be referred to as (3, 4).

Both the cross-streets are marked in the above figure. It can be observed that there is only one cross-street which can be referred as (4, 3), and again, only one which can be referred as (3, 4).
Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
