(Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines. There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
(i) how many cross - streets can be referred to as (4, 3).
(ii) how many cross - streets can be referred to as (3, 4).

Both the cross-streets are marked in the above figure. It can be observed that there is only one cross-street which can be referred as (4, 3), and again, only one which can be referred as (3, 4).
What is the angle between the hour and minute hands at 4:30?
In the adjoining figure, TP and TQ are tangents drawn to a circle with centre O. If $\angle OPQ = 15^\circ$ and $\angle PTQ = \theta$, then find the value of $\sin 2\theta$. 

Section A | Section B | ||
|---|---|---|---|
Marks | Frequency | Marks | Frequency |
0 − 10 | 3 | 0 − 10 | 5 |
10 − 20 | 9 | 10 − 20 | 19 |
20 − 30 | 17 | 20 − 30 | 15 |
30 − 40 | 12 | 30 − 40 | 10 |
40 − 50 | 9 | 40 − 50 | 1 |
Represent the marks of the students of both the sections on the same graph by two frequency polygons. From the two polygons compare the performance of the two sections.