Question:

For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained. 
  1. 252 
  2.  180 
  3.  1008 
  4.  2028 
  5.  1458 
  6.  768

Updated On: Nov 29, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) \(252\) can be factorised as follows.

2252
2126
363
321
77
 1


\(252 = \underline{2 × 2} × \underline{3 × 3} × 7\)
Here, prime factor \(7 \) does not have its pair.
If \(7\) gets a pair, then the number will become a perfect square. 
Therefore, \(252\) has to be multiplied with \(7\) to obtain a perfect square.
\(252 × 7\) = \(\underline{2 × 2} × \underline{3 × 3} × \underline{7 × 7}\)
Therefore, \(252 × 7 = 1764\) is a perfect square. 
∴ \(\sqrt{1764} = 2 \times 3 \times 7 = 42\)


(ii)\(180\) can be factorised as follows.

2180
290
345
315
55
 1


 \(180 = \underline{2 × 2} × \underline{3 × 3 }× 5\)
Here, prime factor \(5\) does not have its pair. 
If \(5\) gets a pair, then the number will become a perfect square. 
Therefore, \(180\) has to be multiplied with \(5\) to obtain a perfect square.
\(180 × 5 = 900 = \underline{2 × 2} × \underline{3 × 3} × \underline{5 × 5}\)
Therefore, \(180 × 5 = 900 \) is a perfect square. 
∴ \(\sqrt{900} = 2\times3\times5=30\)


(iii)\(1008\) can be factorised as follows. 

21008
2504
2250
2126
363
321
77
 1


\(1008 = \underline{2 × 2} × \underline{2 × 2} × \underline{3 × 3} × 7\)
Here, prime factor \(7\) does not have its pair. 
If \(7\) gets a pair, then the number will become a perfect square. 
Therefore, \(1008\) can be multiplied with \(7\) to obtain a perfect square.
\(1008 × 7 = 7056 = \underline{2 × 2} ×\underline{2 × 2} × \underline{3 × 3} × \underline{7 × 7}\)
Therefore, \( 1008 × 7 = 7056\) is a perfect square
∴ \(\sqrt{7056}=2\times2*3\times7=84\)


(iv) 2028 can be factorised as follows. 

22028
21014
3507
13169
1313
 1

\(2028 = \underline{2 \times 2} \times 3 \times \underline{13 \times 13 }\) 
Here, prime factor \(3\) has no pair. 
Therefore \(2028\) must be multiplied by \(3\) to make it a perfect square.  
\(2028 \times 3 = 6084 \;  And \;\sqrt{6084} = 2 \times 2 \times 3 \times 3 \times 13 \times 13 = 78\)


(v) \(1458 = 2 \times \underline{3 \times 3} \times \underline{3 \times 3} \times \underline{3 \times 3}\)  

21458
3729
3243
381
327
39
33
 1


Here, prime factor \(2\) has no pair. 
Therefore \(1458 \) must be multiplied by \(2\) to make it a perfect square.  
\(\therefore\) \(1458 \times 2 = 2916\)   And \(2916 = 2 \times 3 \times 3 \times 3 = 54\)


(vi) \(768 = \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2 }\times \underline{2 \times 2 }\times 3 \)

2768
2384
2192
296
248
224
212
26
33
 1

 Here, prime factor \(3\) has no pair. 
Therefore \(768\) must be multiplied by \(3\) to make it a perfect square.  
\(768 \times 3 = 2304 \)  And \(2304 = 2 \times 2 \times 2 \times 2 \times 3 = 48\) 

Was this answer helpful?
0
0