Question:

Prove: \(2\ tan^{-1}(cos\ x)=tan^{-1}(2\ cosec\ x)\)

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

2 tan-1(cos x) =tan-1(2 cosec x) 
\(\implies\)tan-1\(\frac {2\  cos\  x}{1-cos^2\ x}\) = tan-1(2 cosec x)        [2tan-1x = tan-1\(\frac {2x}{1-x^2}\)]
\(\implies\)\(\frac {2\  cos\  x}{1-cos^2\ x}\) = 2 cosec x 
\(\implies\)\(\frac {2\  cos\  x}{sin^2\ x}\) = \(\frac {2}{sin\ x}\)
\(\implies\)cos x = sin x 
\(\implies\)tan x=1 
So, x = \(\frac {\pi}{4}\)

Was this answer helpful?
0
0