Prove: \(2\ tan^{-1}(cos\ x)=tan^{-1}(2\ cosec\ x)\)
2 tan-1(cos x) =tan-1(2 cosec x)
\(\implies\)tan-1\(\frac {2\ cos\ x}{1-cos^2\ x}\) = tan-1(2 cosec x) [2tan-1x = tan-1\(\frac {2x}{1-x^2}\)]
\(\implies\)\(\frac {2\ cos\ x}{1-cos^2\ x}\) = 2 cosec x
\(\implies\)\(\frac {2\ cos\ x}{sin^2\ x}\) = \(\frac {2}{sin\ x}\)
\(\implies\)cos x = sin x
\(\implies\)tan x=1
So, x = \(\frac {\pi}{4}\)
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: