To find the critical points, differentiate \( f(x) \) with respect to \( x \):
\[
f'(x) = \frac{d}{dx} \left( 4x^2 + \frac{1}{x} \right) = 8x - \frac{1}{x^2}.
\]
Set \( f'(x) = 0 \) to find the critical points:
\[
8x - \frac{1}{x^2} = 0 \quad \Rightarrow \quad 8x^3 = 1 \quad \Rightarrow \quad x = \frac{1}{2}.
\]
To classify the critical point, compute the second derivative:
\[
f''(x) = \frac{d}{dx} \left( 8x - \frac{1}{x^2} \right) = 8 + \frac{2}{x^3}.
\]
Substitute \( x = \frac{1}{2} \):
\[
f''\left(\frac{1}{2}\right) = 8 + \frac{2}{\left(\frac{1}{2}\right)^3} = 8 + 16 = 24>0.
\]
Since \( f''(x)>0 \), the function has a local minimum at \( x = \frac{1}{2} \).
Find the value of \( f(x) \) at \( x = \frac{1}{2} \):
\[
f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^2 + \frac{1}{\frac{1}{2}} = 4\left(\frac{1}{4}\right) + 2 = 1 + 2 = 3.
\]
Final Answer:
The local minimum value of \( f(x) \) is \( 3 \).