According to recent research, air turbulence has increased in various regions around the world due to climate change. Turbulence makes flights bumpy and often delays the flights.
Assume that an airplane observes severe turbulence, moderate turbulence or light turbulence with equal probabilities. Further, the chance of an airplane reaching late to the destination are 55\%, 37\% and 17\% due to severe, moderate and light turbulence respectively.
On the basis of the above information, answer the following questions:
Find the probability that an airplane reached its destination late. If the airplane reached its destination late, find the probability that it was due to moderate turbulence.
Step 1: Given Information. Turbulence can be severe, moderate, or light, each occurring with equal probabilities: \[ P(\text{Severe}) = P(\text{Moderate}) = P(\text{Light}) = \frac{1}{3}. \] The probability of an airplane reaching late due to: \[ P(\text{Late}|\text{Severe}) = 0.55, \quad P(\text{Late}|\text{Moderate}) = 0.37, \quad P(\text{Late}|\text{Light}) = 0.17. \].
Step 2: Find the probability that an airplane reached its destination late. Using the law of total probability: \[ P(\text{Late}) = P(\text{Late}|\text{Severe})P(\text{Severe}) + P(\text{Late}|\text{Moderate})P(\text{Moderate}) + P(\text{Late}|\text{Light})P(\text{Light}) \] Substituting the values: \[ P(\text{Late}) = (0.55 \cdot \frac{1}{3}) + (0.37 \cdot \frac{1}{3}) + (0.17 \cdot \frac{1}{3}) \] Simplifying: \[ P(\text{Late}) = \frac{0.55 + 0.37 + 0.17}{3} = \frac{1.09}{3} = 0.3633. \]
Step 3: Find the probability that it was due to moderate turbulence. Using Bayes' theorem: \[ P(\text{Moderate}|\text{Late}) = \frac{P(\text{Late}|\text{Moderate})P(\text{Moderate})}{P(\text{Late})} \] Substituting the values: \[ P(\text{Moderate}|\text{Late}) = \frac{(0.37 \cdot \frac{1}{3})}{0.3633} \] \[ P(\text{Moderate}|\text{Late}) = \frac{0.37}{3 \cdot 0.3633} = \frac{0.37}{1.09} = 0.3394. \]
Final Answers: The probability that an airplane reached its destination late is: \[ P(\text{Late}) = 0.3633. \] The probability that the airplane was late due to moderate turbulence is: \[ P(\text{Moderate}|\text{Late}) = 0.3394. \]
A gardener wanted to plant vegetables in his garden. Hence he bought 10 seeds of brinjal plant, 12 seeds of cabbage plant, and 8 seeds of radish plant. The shopkeeper assured him of germination probabilities of brinjal, cabbage, and radish to be 25%, 35%, and 40% respectively. But before he could plant the seeds, they got mixed up in the bag and he had to sow them randomly.
Given three identical bags each containing 10 balls, whose colours are as follows:
Bag I | 3 Red | 2 Blue | 5 Green |
Bag II | 4 Red | 3 Blue | 3 Green |
Bag III | 5 Red | 1 Blue | 4 Green |
A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from Bag I is $ p $ and if the ball is Green, the probability that it is from Bag III is $ q $, then the value of $ \frac{1}{p} + \frac{1}{q} $ is:
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |