Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2 have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
R = {(P1, P2): P1 and P2 have same the number of sides}
R is reflexive since (P1, P1) ∈ R as the same polygon has the same number of sides with
itself.
Let (P1, P2) ∈ R.
⇒ P1 and P2 have the same number of sides.
⇒ P2 and P1 have the same number of sides.
⇒ (P2, P1) ∈ R
∴R is symmetric.
Now,
Let (P1, P2), (P2, P3) ∈ R.
⇒ P1 and P2 have the same number of sides. Also, P2 and P3 have the same number of
sides.
⇒ P1 and P3 have the same number of sides.
⇒ (P1, P3) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).
Hence, the set of all elements in A related to triangle T is the set of all triangles.
Read the following text carefully:
Union Food and Consumer Affairs Minister said that the Central Government has taken many proactive steps in the past few years to control retail prices of food items. He said that the government aims to keep inflation under control without compromising the country’s economic growth. Retail inflation inched up to a three-month high of 5.55% in November 2023 driven by higher food prices. Inflation has been declining since August 2023, when it touched 6.83%. 140 new price monitoring centres had been set up by the Central Government to keep a close watch on wholesale and retail prices of essential commodities. The Government has banned the export of many food items like wheat, broken rice, non-basmati white rice, onions etc. It has also reduced import duties on edible oils and pulses to boost domestic supply and control price rise. On the basis of the given text and common understanding,
answer the following questions:
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.