>
Mathematics
List of top Mathematics Questions
\[ \text{If } y = |\cos x - \sin x| + |\tan x - \cot x|, \text{ then } \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{3}} + \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{6}} = \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\[ \text{Assertion (A): If } y = f(x) = (|x| - |x - 1|)^2, \text{ then } \left.\frac{dy}{dx}\right|_{x = 1} = 1 \] \[ \text{Reason (R): If } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ exists, then it is called the derivative of } f(x) \text{ at } x = a. \] Then:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\[ \text{If } x = 2 \cos^3 \theta \text{ and } y = 3 \sin^2 \theta, \text{ then } \frac{dy}{dx} =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\[ \text{If the function } f(x) = \begin{cases} 1 + \cos x, & x \leq 0 \\ a - x, & 0 < x \leq 2 \\ x^2 - b^2, & x > 2 \end{cases} \text{ is continuous everywhere, then } a^2 + b^2 =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
\[ \text{If } \lim_{x \to 0} \frac{\cos 2x - \cos 4x}{1 - \cos 2x} = k, \text{ then evaluate } \lim_{x \to k} \frac{x^k - 27}{x^{k+1} - 81} \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
\[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} = \ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
A plane \( \pi \) is passing through the points \( A(1, -2, 3) \) and \( B(6, 4, 5) \). If the plane \( \pi \) is perpendicular to the plane \( 3x - y + z = 2 \), then the perpendicular distance from \( (0, 0, 0) \) to the plane \( \pi \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If \( A = (0, 4, -3),\ B = (5, 0, 12),\ C = (7, 24, 0) \), then \( \angle BAC = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If \( A(0,0,0),\ B(3,4,0),\ C(0,12,5) \) are the vertices of a triangle ABC, then the x-coordinate of its incenter is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
The distance between the tangents of the hyperbola \( 2x^2 - 3y^2 = 6 \) which are perpendicular to the line \( x - 2y + 5 = 0 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If a tangent to the hyperbola \( xy = -1 \) is also a tangent to the parabola \( y^2 = 8x \), then the equation of that tangent is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
The angle between the tangents drawn from a point \( (-3, 2) \) to the ellipse \( 4x^2 + 9y^2 - 36 = 0 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
PQ is a focal chord of the parabola \( y^2 = 4x \) with focus S. If \( P = (4,4) \), then SQ = ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
Let \( \theta \) be the angle between the circles \( S = x^2 + y^2 + 2x - 2y + c = 0 \) and \( S' = x^2 + y^2 - 6x - 8y + 9 = 0 \). If \( c \) is an integer and \( \cos\theta = \dfrac{5}{16} \), then the radius of the circle \( S = 0 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
A circle \( S = x^2 + y^2 - 16 = 0 \) intersects another circle \( S' = 0 \) of radius 5 units such that their common chord is of maximum length. If the slope of that chord is \( \dfrac{3}{4} \), then the centre of such a circle \( S' = 0 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
Length of the common chord of two circles of same radius is \( 2\sqrt{17} \). If one of the two circles is \( x^2 + y^2 + 6x + 4y - 12 = 0 \), then the acute angle between the two circles is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If the circle passing through the points \( (3,5), (5,5), (3,-3) \) cuts the circle \( x^2 + y^2 + 2x + 2fy = 0 \) orthogonally, then the value of \( f \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If \( Q \) is the inverse point of \( P(-1, 1) \) with respect to the circle \( x^2 + y^2 - 2x + 2y = 0 \), then the line containing \( Q \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If the angle between the lines joining the origin to the points of intersection of \( x + 2y + \lambda = 0 \) and \( 2x^2 - 2xy + 3y^2 + 2x - y - 1 = 0 \) is \( \dfrac{\pi}{2} \), then a value of \( \lambda \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
One line of the pair of lines \( x^2 + xy - 2y^2 = 0 \) is perpendicular to one line of the pair of lines \( 3y^2 - 5xy - 2x^2 = 0 \). If the combined equation of the two lines other than those two perpendicular lines is \( ax^2 + 2hxy + by^2 = 0 \), then \( a + 2h + b = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If \( M \) is the foot of the perpendicular drawn from the origin to the line \( x - 2y + 3 = 0 \), which meets the X and Y-axes at \( A \) and \( B \) respectively, then \( AM = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If the lines \( x + 2ay + a = 0 \), \( x + 3by + b = 0 \), \( x + 4cy + c = 0 \) are concurrent, then \( a, b, c \) are in
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
By rotating the axes about the origin in anti-clockwise direction with certain angle, if the equation \( x^2 + 4xy + y^2 = 1 \) is transformed to \( \frac{x'^2}{a^2} - \frac{y'^2}{b^2} = 1 \), then \( \sqrt{\frac{a^2 + b^2}{a^2}} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
A straight line passing through a fixed point (2, 3) intersects the coordinate axes at points \( P \) and \( Q \). If \( O \) is the origin and \( R \) is a variable point such that \( OPRQ \) is a rectangle, then the locus of \( R \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Coordinate Geometry
If $X$ follows Poisson distribution with variance 2, then $P(X \geq 3) = $
AP EAPCET - 2025
AP EAPCET
Mathematics
Probability
Prev
1
...
62
63
64
65
66
...
924
Next