We are given three vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) with magnitudes 2, 3, and 4, respectively. We are also given the following conditions:
1) \( \mathbf{a} \) is perpendicular to \( \mathbf{b} + \mathbf{c} \),
2) \( \mathbf{b} \) is perpendicular to \( \mathbf{c} + \mathbf{a} \),
3) \( \mathbf{c} \) is perpendicular to \( \mathbf{a} + \mathbf{b} \).
We need to find the magnitude of the vector sum \( \mathbf{a} + \mathbf{b} + \mathbf{c} \).
Step 1: Use the perpendicularity conditions
For each pair of vectors, their dot product must be zero because they are perpendicular.
- \( \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = 0 \)
- \( \mathbf{b} \cdot (\mathbf{c} + \mathbf{a}) = 0 \)
- \( \mathbf{c} \cdot (\mathbf{a} + \mathbf{b}) = 0 \)
Step 2: Simplify the equations
From the first condition:
\[
\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = 0 \implies \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} = 0
\]
From the second condition:
\[
\mathbf{b} \cdot (\mathbf{c} + \mathbf{a}) = 0 \implies \mathbf{b} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a} = 0
\]
From the third condition:
\[
\mathbf{c} \cdot (\mathbf{a} + \mathbf{b}) = 0 \implies \mathbf{c} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{b} = 0
\]
Thus, we have the system of three equations:
1) \( \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} = 0 \)
2) \( \mathbf{b} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a} = 0 \)
3) \( \mathbf{c} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{b} = 0 \)
These equations imply that \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) are mutually perpendicular to each other.
Step 3: Calculate the magnitude of \( \mathbf{a} + \mathbf{b} + \mathbf{c} \)
Since the vectors are perpendicular to each other, the magnitude of their sum is given by the Pythagorean theorem:
\[
|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2}
\]
Substitute the magnitudes of \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \):
\[
|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{2^2 + 3^2 + 4^2}
\]
\[
|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{4 + 9 + 16} = \sqrt{29}
\]
Thus, the magnitude of \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) is \( \boxed{\sqrt{29}} \).