Step 1: Rewrite the integrand using powers.
\[
\int \frac{1}{(x-5)^2}\,dx
= \int (x-5)^{-2}\,dx
\]
Step 2: Apply substitution.
Let
\[
u = x-5 \quad \Rightarrow \quad du = dx
\]
So the integral becomes:
\[
\int u^{-2}\,du
\]
Step 3: Integrate using the power rule.
\[
\int u^{n}\,du = \frac{u^{n+1}}{n+1} + C \quad (n \neq -1)
\]
Here, \(n=-2\):
\[
\int u^{-2}\,du = \frac{u^{-1}}{-1} + C = -u^{-1} + C
\]
Step 4: Substitute back.
\[
= -\frac{1}{x-5} + C
\]
Step 5: Final conclusion.
\[
\boxed{-\dfrac{1}{(x-5)} + C}
\]