Step 1: Write the general second-degree equation of a conic.
\[
Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
\]
From the given equation:
\[
13x^2 - 18xy + 37y^2 + 2x + 14y - 2 = 0
\]
we identify:
\[
A = 13,\quad B = -18,\quad C = 37
\]
Step 2: Use the discriminant to identify the conic.
The discriminant is:
\[
\Delta = B^2 - 4AC
\]
\[
\Delta = (-18)^2 - 4(13)(37)
\]
\[
\Delta = 324 - 1924
\]
\[
\Delta = -1600
\]
Step 3: Interpret the result.
If \(B^2 - 4AC = 0\) \(\Rightarrow\) Parabola
If \(B^2 - 4AC>0\) \(\Rightarrow\) Hyperbola
If \(B^2 - 4AC<0\) \(\Rightarrow\) Ellipse (or circle if \(A=C\) and \(B=0\))
Here,
\[
B^2 - 4AC = -1600<0
\]
and \(A \neq C\), so the conic is an ellipse.
Step 4: Final conclusion.
The given equation represents an \(\boxed{\text{Ellipse}}\).