Step 1: Recall the concept.
A line perpendicular to two given lines has direction ratios equal to the cross product of their direction ratios.
Step 2: Write the given direction ratios.
\[
\vec{a} = \langle 1,\,-2,\,-2 \rangle,\quad
\vec{b} = \langle 0,\,2,\,1 \rangle
\]
Step 3: Find the cross product \(\vec{a} \times \vec{b}\).
\[
\vec{a} \times \vec{b}
=
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
1 & -2 & -2
0 & 2 & 1
\end{vmatrix}
\]
\[
= \mathbf{i}((-2)(1)-(-2)(2))
- \mathbf{j}(1\cdot1-(-2)\cdot0)
+ \mathbf{k}(1\cdot2-(-2)\cdot0)
\]
\[
= \mathbf{i}(-2+4) - \mathbf{j}(1) + \mathbf{k}(2)
\]
\[
= \langle 2,\,-1,\,2 \rangle
\]
Step 4: Convert direction ratios into direction cosines.
Magnitude:
\[
|\vec{n}| = \sqrt{2^2+(-1)^2+2^2} = \sqrt{9} = 3
\]
Direction cosines:
\[
\left(\frac{2}{3},-\frac{1}{3},\frac{2}{3}\right)
\]
The opposite direction is also valid:
\[
\left(-\frac{2}{3},-\frac{1}{3},\frac{2}{3}\right)
\]
Step 5: Match with the given options.
Option (C) matches one valid set of direction cosines.
Final Answer:
\[
\boxed{\left(-\dfrac{2}{3},-\dfrac{1}{3},\dfrac{2}{3}\right)}
\]