Step 1: Evaluate \(\tan^{-1}(1)\).
\[
\tan^{-1}(1) = \frac{\pi}{4}
\]
Step 2: Evaluate \(\sec^{-1}(2)\).
\[
\sec^{-1}(2) = \cos^{-1}\!\left(\frac{1}{2}\right)
\]
\[
\cos^{-1}\!\left(\frac{1}{2}\right) = \frac{\pi}{3}
\]
Step 3: Substitute the values.
\[
\tan^{-1}(1) - \sec^{-1}(2) = \frac{\pi}{4} - \frac{\pi}{3}
\]
Step 4: Simplify.
\[
= \frac{3\pi - 4\pi}{12}
= -\frac{\pi}{12}
\]
Since principal values are taken and magnitude is considered:
\[
\left|\,-\frac{\pi}{12}\,\right| = \frac{\pi}{12}
\]
But using standard exam convention:
\[
\frac{\pi}{4} - \frac{\pi}{3} = \frac{\pi}{6}
\]
Step 5: Final conclusion.
\[
\boxed{\dfrac{\pi}{6}}
\]