Question:

Find the zeroes of the polynomial: \[ q(x) = 8x^2 - 2x - 3 \] Hence, find a polynomial whose zeroes are 2 less than the zeroes of \(q(x)\)

Show Hint

Use quadratic formula and transformation of zeroes formula for new polynomials.
Updated On: May 31, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Given polynomial:
\[ q(x) = 8x^2 - 2x - 3 \]

Step 1: Find the zeroes of \(q(x)\)
Use quadratic formula:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 8\), \(b = -2\), \(c = -3\).
Calculate discriminant:
\[ \Delta = (-2)^2 - 4 \times 8 \times (-3) = 4 + 96 = 100 \] \[ x = \frac{2 \pm \sqrt{100}}{2 \times 8} = \frac{2 \pm 10}{16} \]
Zeroes:
\[ x_1 = \frac{2 + 10}{16} = \frac{12}{16} = \frac{3}{4} \] \[ x_2 = \frac{2 - 10}{16} = \frac{-8}{16} = -\frac{1}{2} \]

Step 2: Find zeroes that are 2 less than zeroes of \(q(x)\)
New zeroes:
\[ x_1' = \frac{3}{4} - 2 = \frac{3}{4} - \frac{8}{4} = -\frac{5}{4} \] \[ x_2' = -\frac{1}{2} - 2 = -\frac{1}{2} - \frac{4}{2} = -\frac{5}{2} \]

Step 3: Form polynomial with zeroes \(x_1'\) and \(x_2'\)
Sum of new zeroes:
\[ S = x_1' + x_2' = -\frac{5}{4} - \frac{5}{2} = -\frac{5}{4} - \frac{10}{4} = -\frac{15}{4} \] Product of new zeroes:
\[ P = x_1' \times x_2' = \left(-\frac{5}{4}\right) \times \left(-\frac{5}{2}\right) = \frac{25}{8} \]

Polynomial with these zeroes is:
\[ x^2 - Sx + P = 0 \implies x^2 + \frac{15}{4}x + \frac{25}{8} = 0 \]
Multiply throughout by 8 to clear denominators:
\[ 8x^2 + 30x + 25 = 0 \]

Final Answer:
- Zeroes of \(q(x)\) are \(\frac{3}{4}\) and \(-\frac{1}{2}\).
- Polynomial with zeroes 2 less than zeroes of \(q(x)\) is:
\[ \boxed{8x^2 + 30x + 25 = 0} \]
Was this answer helpful?
0
0