Step 1: Recall the definition of a unit vector.
A vector is a unit vector if its magnitude is equal to \(1\).
Step 2: Find the magnitude of the given vector.
Given vector:
\[
\lambda(3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})
\]
Magnitude:
\[
\left|\lambda(3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})\right|
= |\lambda|\sqrt{3^2 + 2^2 + (-2)^2}
\]
\[
= |\lambda|\sqrt{9 + 4 + 4}
= |\lambda|\sqrt{17}
\]
Step 3: Apply the unit vector condition.
\[
|\lambda|\sqrt{17} = 1
\]
\[
|\lambda| = \frac{1}{\sqrt{17}}
\]
Step 4: Write both possible values of \(\lambda\).
\[
\lambda = \pm \frac{1}{\sqrt{17}}
\]
Step 5: Final conclusion.
The correct answer is:
\[
\boxed{\pm \dfrac{1}{\sqrt{17}}}
\]