Step 1: Rewrite the given equation in standard form.
\[
2x^2 + 2y^2 = 3x - 5y + 7
\]
Bring all terms to one side:
\[
2x^2 + 2y^2 - 3x + 5y - 7 = 0
\]
Divide throughout by \(2\):
\[
x^2 + y^2 - \frac{3}{2}x + \frac{5}{2}y - \frac{7}{2} = 0
\]
Step 2: Group \(x\) and \(y\) terms and complete the squares.
\[
(x^2 - \tfrac{3}{2}x) + (y^2 + \tfrac{5}{2}y) = \tfrac{7}{2}
\]
Complete the square:
\[
x^2 - \tfrac{3}{2}x + \left(\tfrac{3}{4}\right)^2
+
y^2 + \tfrac{5}{2}y + \left(\tfrac{5}{4}\right)^2
= \tfrac{7}{2} + \tfrac{9}{16} + \tfrac{25}{16}
\]
\[
(x - \tfrac{3}{4})^2 + (y + \tfrac{5}{4})^2
= \tfrac{7}{2} + \tfrac{34}{16}
\]
\[
(x - \tfrac{3}{4})^2 + (y + \tfrac{5}{4})^2
= \tfrac{45}{16}
\]
Step 3: Compare with standard form.
\[
(x-h)^2 + (y-k)^2 = r^2
\]
Thus,
\[
h = \tfrac{3}{4},\quad k = -\tfrac{5}{4},\quad r^2 = \tfrac{45}{16}
\]
\[
r = \sqrt{\tfrac{45}{16}} = \frac{3\sqrt{5}}{4}\sqrt{2} = \frac{3\sqrt{10}}{4}
\]
Step 4: Final conclusion.
Centre \(= \left(\dfrac{3}{4}, -\dfrac{5}{4}\right)\)
Radius \(= \dfrac{3\sqrt{10}}{4}\)