The maximum value of \( f(x) = (x - 1)^2 (x + 1)^3 \) is equal to \[ \frac{2^p 3^q}{3125} \,\, \text{then the ordered pair of} (p, q) \text{ will be} \]
If \( n_1 \) and \( n_2 \) are the number of real valued solutions of \( x = |\sin^{-1} x| \) \(\text{and}\) \( x = \sin(x) \text{ respectively, then the value of} \, n_2 - n_1 \text{ is:}\)
If the equation \[ |x^2 - 6x + 8| = a \] \(\text{has four real solutions, then find the value of \( a \):}\)
Evaluate \(\begin{vmatrix}1&2&-1 \\ 5&4&1 \\ 7&6&1\end{vmatrix}\).
Evaluate \(\begin{vmatrix}-\sin\theta&\cos\theta \\ \sec\theta&\csc\theta\end{vmatrix}\).