Question:

\(\dfrac{d}{dx}\left(e^{-3x}\right)=\) ?

Show Hint

Shortcut: \((e^{kx})'=k\,e^{kx}\).
  • \(\dfrac{e^{-3x}}{3}\)
  • \(\dfrac{e^{-3x}}{-3}\)
  • \(3e^{-3x}\)
  • \(-3e^{-3x}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Idea. Derivative of \(e^{u}\) is \(e^{u}\cdot u'\). Here \(u=-3x\) so \(u'=-3\).
\[ \frac{d}{dx}e^{-3x}=e^{-3x}\cdot(-3)=-3e^{-3x}. \]
Was this answer helpful?
0
0