Step 1: Consider the left-hand side of the equation:
\[
\lim_{x \to 1} \frac{x^4 - 1}{x - 1}
\]
Factor \( x^4 - 1 \) as \( (x^2 - 1)(x^2 + 1) \), and further factor \( x^2 - 1 \) as \( (x - 1)(x + 1) \). Thus, we get:
\[
\frac{(x - 1)(x + 1)(x^2 + 1)}{x - 1}
\]
Cancel the common factor \( x - 1 \):
\[
(x + 1)(x^2 + 1)
\]
Now substitute \( x = 1 \):
\[
(1 + 1)(1^2 + 1) = 2 \times 2 = 4
\]
Thus, the left-hand side gives 4.
Step 2: Now consider the right-hand side of the equation:
\[
\lim_{x \to k} \frac{x^3 - k^2}{x^2 - k^2}
\]
Factor \( x^3 - k^2 \) as \( (x - k)(x^2 + kx + k^2) \), and factor \( x^2 - k^2 \) as \( (x - k)(x + k) \). Thus, the equation becomes:
\[
\frac{(x - k)(x^2 + kx + k^2)}{(x - k)(x + k)}
\]
Cancel the common factor \( x - k \):
\[
\frac{x^2 + kx + k^2}{x + k}
\]
Now substitute \( x = k \):
\[
\frac{k^2 + k^2 + k^2}{k + k} = \frac{3k^2}{2k} = \frac{3k}{2}
\]
So, the right-hand side equals \( \frac{3k}{2} \).
Step 3: Now, equate the two sides:
\[
4 = \frac{3k}{2}
\]
Solving for \( k \):
\[
k = \frac{8}{3}
\]
Thus, the correct answer is (a) \( \frac{8}{3} \).