Step 1 (Reason: Parallel lines have proportional direction ratios). For lines with d.r.s \((x,5,3)\) and \((20,10,6)\), \[ \frac{x}{20}=\frac{5}{10}=\frac{3}{6}. \]
Step 2 (Reason: simplify known ratios to identify the common factor). \(\dfrac{5}{10}=\dfrac{3}{6}=\dfrac12\), hence the common ratio is \(\dfrac12\).
Step 3 (Reason: equate first pair to the same ratio and solve for \(x\)). \[ \frac{x}{20}=\frac12 \ \Rightarrow\ x=20\cdot\frac12=10. \] Therefore \(x=10\).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $