Let A and B be sets. \[A \cap X = B \cap X = \varnothing \quad \text{and} \quad A \cup X = B \cup X \quad \text{for some set } X,\ \text{find the relation between } A \text{ and } B.\]
If \( f(x) = \lim_{x \to 0} \frac{6^x - 3^x - 2^x + 1}{\log_e 9 (1 - \cos x)} \) \(\text{ is a real number, then }\) \( \lim_{x \to 0} f(x) = \)
Consider the following frequency distribution table. \[ \begin{array}{|c|c|} \hline \textbf{Class Interval} & \textbf{Frequency} \\ \hline 10-20 & 180 \\ \hline 20-30 & f_1 \\ \hline 30-40 & 34 \\ \hline 40-50 & 180 \\ \hline 50-60 & 136 \\ \hline 60-70 & 50 \\ \hline 70-80 & f_2 \\ \hline \end{array} \] If the total frequency is 685 and the median is 42.6, then the values of \( f_1 \) and \( f_2 \) are
Let \[ f(x) = \frac{x^2 - 1}{|x| - 1}. \] \(\text{Then the value of}\) \[ \lim_{x \to 1} f(x) \text{ is:} \]
If \( |x - 6| = |x^2 - 4x| - |x^2 - 5x + 6| \), \(\text{ where \( x \) is a real variable.}\)
If \[ \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}, \] \(\text{then }\) [\(\mathbf{a}\) \(\mathbf{b}\) \(\mathbf{c}\)] \(\text{ depends on:}\)
The maximum value of \( f(x) = (x - 1)^2 (x + 1)^3 \) is equal to \[ \frac{2^p 3^q}{3125} \,\, \text{then the ordered pair of} (p, q) \text{ will be} \]
If A and B are square matrices such that \( B = -A^{-1}BA \), \(\text{ then }\) \( (A + B)^2 \) is
A real valued function \( f \) is defined as \[ f(x) = \begin{cases} -1 & \text{if} \, -2 \leq x \leq 0 \\ x - 1 & \text{if} \, 0 \leq x \leq 2 \end{cases} \] \(\text{Which of the following statements is FALSE?}\)