Idea. Use the chain rule: derivative of \(\cos u\) is \(-\sin u\cdot u'\). The outer constant \(2\) stays outside.
Step 1. Let \(u=\frac{3x}{4}\Rightarrow u'=\frac{3}{4}\).
Step 2.
\[
\frac{d}{dx}\big(2\cos u\big)=2(-\sin u)\,u'=-2\sin\!\left(\tfrac{3x}{4}\right)\cdot\frac{3}{4}
=-\frac{3}{2}\sin\!\left(\tfrac{3x}{4}\right).
\]