Question:

\(\dfrac{d}{dx}\big(2\cos \tfrac{3x}{4}\big)=\) ?

Show Hint

Inside-function derivative multiplies the result: \(f(g(x))'\!=f'(g)\,g'\).
  • \(-2\sin \tfrac{3x}{4}\)
  • \(-\dfrac{3}{8}\sin \tfrac{3x}{4}\)
  • \(-\dfrac{3}{4}\sin \tfrac{3x}{4}\)
  • \(-\dfrac{3}{2}\sin \tfrac{3x}{4}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Idea. Use the chain rule: derivative of \(\cos u\) is \(-\sin u\cdot u'\). The outer constant \(2\) stays outside.
Step 1. Let \(u=\frac{3x}{4}\Rightarrow u'=\frac{3}{4}\).
Step 2. \[ \frac{d}{dx}\big(2\cos u\big)=2(-\sin u)\,u'=-2\sin\!\left(\tfrac{3x}{4}\right)\cdot\frac{3}{4} =-\frac{3}{2}\sin\!\left(\tfrac{3x}{4}\right). \]
Was this answer helpful?
0
0