Step 1 (Reason: Parallelism implies a common proportionality constant). Let \[ \frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}=k\neq 0. \]
Step 2 (Reason: rewrite \(a_1\) and \(c_1\) using \(k\)). From above, \(a_1=k\,a_2\) and \(c_1=k\,c_2\).
Step 3 (Reason: substitute and cancel). \[ \frac{a_1 c_2}{a_2}=\frac{k\,a_2\cdot c_2}{a_2}=k\,c_2=c_1. \] Hence \(\dfrac{a_1 c_2}{a_2}=c_1\).