Let $y=f(x)$ represent a parabola with focus $\left(-\frac{1}{2}, 0\right)$ and directrix $y=-\frac{1}{2}$ Then $S=\left\{x \in R : \tan ^{-1}(\sqrt{f(x)})+\sin ^{-1}(\sqrt{f(x)+1})=\frac{\pi}{2}\right\}$ :
The negation of \( \sim S \vee ( \sim R \wedge S) \) \(\text{ is equivalent to}\)
If \[ \int x \sin x \sec^3 x \, dx = \frac{1}{2} \left[ f(x) \sec^2 x + g(x) \left( \frac{\tan x}{x} \right) \right] + c, \] \(\text{then which of the following is true?}\)
Let \( \mathbf{A} = 2\hat{i} + \hat{j} - 2\hat{k} \) and \( \mathbf{B} = \hat{i} + \hat{j} \). If \( \mathbf{C} \) is a vector such that \( |\mathbf{C} - \mathbf{A}| = 3 \) and the angle between \( \mathbf{A} \times \mathbf{B} \) and \( \mathbf{C} \) is \( 30^\circ \), then \( [(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}] = 3 \), the value of \( \mathbf{A} \cdot \mathbf{C} \) is equal to:
Let A and B be sets. \[A \cap X = B \cap X = \varnothing \quad \text{and} \quad A \cup X = B \cup X \quad \text{for some set } X,\ \text{find the relation between } A \text{ and } B.\]