Step 1: Finding the equation of the required plane
The given plane equation is:
\[
2x - y + 2z = 0.
\]
Since the required plane \( \pi \) is parallel to this plane, its equation must be of the form:
\[
2x - y + 2z = d.
\]
Since the plane passes through \( (-2,1,-1) \), substituting these values:
\[
2(-2) - 1(1) + 2(-1) = d.
\]
\[
-4 - 1 - 2 = d \Rightarrow d = -7.
\]
Thus, the equation of the required plane \( \pi \) is:
\[
2x - y + 2z = -7.
\]
Step 2: Finding the foot of the perpendicular
The formula for the foot of the perpendicular from \( (x_1, y_1, z_1) \) to the plane \( Ax + By + Cz + D = 0 \) is:
\[
x = x_1 - \lambda A, \quad y = y_1 - \lambda B, \quad z = z_1 - \lambda C.
\]
Substituting \( A = 2 \), \( B = -1 \), \( C = 2 \), and the given point \( (1,2,1) \):
\[
x = 1 - \lambda(2), \quad y = 2 - \lambda(-1), \quad z = 1 - \lambda(2).
\]
Since the foot of the perpendicular lies on the plane \( 2x - y + 2z = -7 \), substituting these values:
\[
2(1 - 2\lambda) - (2 + \lambda) + 2(1 - 2\lambda) = -7.
\]
Expanding:
\[
2 - 4\lambda - 2 - \lambda + 2 - 4\lambda = -7.
\]
\[
-9\lambda + 2 = -7.
\]
\[
-9\lambda = -9 \quad \Rightarrow \quad \lambda = 1.
\]
Step 3: Finding the coordinates
\[
x = 1 - 2(1) = -1, \quad y = 2 + 1 = 3, \quad z = 1 - 2(1) = -1.
\]
Thus, the foot of the perpendicular is:
\[
(-1,3,-1).
\]