Step 1: Recognizing the sum of an infinite geometric series
The given function \( y \) represents the sum of an infinite geometric series:
\[
y = \sum_{n=0}^{\infty} x^n.
\]
Using the formula for the sum of an infinite geometric series:
\[
y = \frac{1}{1 - x}, \quad \text{for } |x|<1.
\]
Step 2: First derivative of \( y \)
Differentiating both sides with respect to \( x \):
\[
y' = \frac{d}{dx} \left( \frac{1}{1 - x} \right).
\]
Using the derivative of a rational function:
\[
y' = \frac{1}{(1-x)^2}.
\]
Step 3: Second derivative of \( y \)
Differentiating again:
\[
y'' = \frac{d}{dx} \left( \frac{1}{(1-x)^2} \right).
\]
Using the chain rule:
\[
y'' = \frac{2}{(1-x)^3}.
\]
Step 4: Expressing \( y'' \) in terms of \( y \)
Since we have:
\[
y = \frac{1}{1 - x},
\]
\[
y' = \frac{1}{(1 - x)^2},
\]
\[
y'' = \frac{2}{(1 - x)^3}.
\]
Rewriting \( y'' \) in terms of \( y \) and \( y' \):
\[
y'' = 2 y y'.
\]
Step 5: Conclusion
Thus, the final answer is:
\[
\boxed{2yy'}.
\]