We are given the function:
\[
f(x) = \frac{5x \csc(\sqrt{x}) - 1}{(x-2) \csc(\sqrt{x})}.
\]
We need to evaluate:
\[
\lim\limits_{x \to \infty} f(x^2).
\]
Step 1: Substituting \( x^2 \) into \( f(x) \)
\[
f(x^2) = \frac{5x^2 \csc(\sqrt{x^2}) - 1}{(x^2 - 2) \csc(\sqrt{x^2})}.
\]
Since \( \sqrt{x^2} = x \), we simplify:
\[
f(x^2) = \frac{5x^2 \csc(x) - 1}{(x^2 - 2) \csc(x)}.
\]
Step 2: Evaluating the limit as \( x \to \infty \)
For large \( x \), the behavior of \( \csc(x) \) oscillates but remains finite. Hence, the dominant terms in the numerator and denominator are:
\[
5x^2 \csc(x) \quad {and} \quad x^2 \csc(x).
\]
Dividing both numerator and denominator by \( x^2 \csc(x) \):
\[
\lim\limits_{x \to \infty} f(x^2) = \lim\limits_{x \to \infty} \frac{5x^2 \csc(x) - 1}{(x^2 - 2) \csc(x)}
= \lim\limits_{x \to \infty} \frac{5 - \frac{1}{x^2 \csc(x)}}{1 - \frac{2}{x^2}}.
\]
As \( x \to \infty \), both \( \frac{1}{x^2 \csc(x)} \) and \( \frac{2}{x^2} \) approach zero, leaving:
\[
\frac{5 - 0}{1 - 0} = 5.
\]