>
Exams
>
Mathematics
>
Limit and Continuity
>
evaluate the limit lim x to 4 left frac 1 x 4 frac
Question:
Evaluate the limit:
$$ \lim_{x \to 4} \left( \frac{1}{x - 4} - \frac{5}{x^2 - 3x - 4} \right) $$
is equal to
Show Hint
When evaluating limits involving rational expressions, always try factoring the denominator first to check for simplifications.
KEAM - 2024
KEAM
Updated On:
Apr 6, 2025
\( \frac{1}{4} \)
\( \frac{1}{5} \)
\( \frac{1}{3} \)
\( \frac{1}{2} \)
\( 1 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Given: \[ \lim_{x \to 4} \left( \frac{1}{x - 4} - \frac{5}{x^2 - 3x - 4} \right) \] First, factorize the denominator in the second fraction: \[ x^2 - 3x - 4 = (x - 4)(x + 1) \] Thus, rewriting the expression: \[ \lim_{x \to 4} \left( \frac{1}{x - 4} - \frac{5}{(x - 4)(x + 1)} \right) \] Taking the common denominator: \[ \frac{(x+1) - 5}{(x-4)(x+1)} \] \[ \frac{x + 1 - 5}{(x - 4)(x + 1)} \] \[ \frac{x - 4}{(x - 4)(x + 1)} \] Cancel \( (x-4) \) from numerator and denominator: \[ \lim_{x \to 4} \frac{1}{x + 1} \] Substituting \( x = 4 \): \[ \frac{1}{4 + 1} = \frac{1}{5} \] Thus, the correct answer is (B) \( \frac{1}{5} \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limit and Continuity
If \( f(x) = \begin{cases} -2 & \text{if } x \le -1 \\ 2x & \text{if } -1 < x \le 1 \\ 2 & \text{if } x > 1 \end{cases} \), then test the continuity of the function at \( x = -1 \) and at \( x = 1 \).
UP Board XII - 2025
Mathematics
Limit and Continuity
View Solution
If $f(x) = 3x - b$, $x>1$ ; $f(x) = 11$, $x = 1$ ; $f(x) = -3x - 2b$, $x<1$ is continuous at $x = 1$, then the values of $a$ and $b$ are :
CBSE CLASS XII - 2025
Mathematics
Limit and Continuity
View Solution
Let \( f, g : \mathbb{R} \to \mathbb{R} \) be two functions defined by \[ f(x) = \begin{cases} x |x| \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] and \[ g(x) = \begin{cases} x^2 \sin \frac{1}{x} + x \cos \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] Then, which one of the following is TRUE?
IIT JAM MA - 2025
Mathematics
Limit and Continuity
View Solution
Let \( f, g : \mathbb{R} \to \mathbb{R} \) be two functions defined by \[ f(x) = \begin{cases} |x|^{1/8} \sin \tfrac{1}{|x|} \cos x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] and \[ g(x) = \begin{cases} e^x \cos \tfrac{1}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \] Then, which one of the following is TRUE?
IIT JAM MA - 2025
Mathematics
Limit and Continuity
View Solution
Let \( f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \[ f(x, y) = \begin{cases} \frac{(x^2 + \sin(xy))^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases} \] Then, which of the following is/are TRUE?
IIT JAM MA - 2025
Mathematics
Limit and Continuity
View Solution
View More Questions
Questions Asked in KEAM exam
A lift having mass 1000kg moves upward against a frictional force of 2000N. Power given by motor is 36000W. What is the velocity of the lift?
KEAM - 2025
Speed, Time and Distance
View Solution
Solve for \( a \) and \( b \) given the equations:
\[ \sin x + \sin y = a, \quad \cos x + \cos y = b, \quad x + y = \frac{2\pi}{3} \]
KEAM - 2025
Trigonometry
View Solution
If \( A \) is a \( 3 \times 3 \) matrix and \( |B| = 3|A| \) and \( |A| = 5 \), then find \( \left| \frac{\text{adj} B}{|A|} \right| \).
KEAM - 2025
Matrix Operations
View Solution
An unbiased die is tossed until a sum \( S \) is obtained. If \( X \) denotes the number of times tossed, find the ratio \( \frac{P(X = 2)}{P(X = 5)} \).
KEAM - 2025
Probability
View Solution
If
$ f(x) = \log 3 - \sin x $, $ y = f(f(x)) $, find $ y(0) $.
KEAM - 2025
Functions
View Solution
View More Questions