Given:
\[
\lim_{x \to 4} \left( \frac{1}{x - 4} - \frac{5}{x^2 - 3x - 4} \right)
\]
First, factorize the denominator in the second fraction:
\[
x^2 - 3x - 4 = (x - 4)(x + 1)
\]
Thus, rewriting the expression:
\[
\lim_{x \to 4} \left( \frac{1}{x - 4} - \frac{5}{(x - 4)(x + 1)} \right)
\]
Taking the common denominator:
\[
\frac{(x+1) - 5}{(x-4)(x+1)}
\]
\[
\frac{x + 1 - 5}{(x - 4)(x + 1)}
\]
\[
\frac{x - 4}{(x - 4)(x + 1)}
\]
Cancel \( (x-4) \) from numerator and denominator:
\[
\lim_{x \to 4} \frac{1}{x + 1}
\]
Substituting \( x = 4 \):
\[
\frac{1}{4 + 1} = \frac{1}{5}
\]
Thus, the correct answer is (B) \( \frac{1}{5} \).