Let \( f : \mathbb{R}^2 \to \mathbb{R} \) be defined by
\[
f(x, y) = \begin{cases}
\frac{(x^2 - y^2)^2 xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\
0 & \text{if } (x, y) = (0, 0).
\end{cases}
\]
Then, the value of \( \frac{\partial f}{\partial y}(0, 0) \) and \( \frac{\partial f}{\partial x}(0, 0) \) is equal to ........... (rounded off to two decimal places).