The position vectors of the vertices \( A, B \) and \( C \) of a triangle are \[ 2\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}, \quad 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \quad \text{and} \quad -\mathbf{i} + \mathbf{j} + 3\mathbf{k} \] respectively. Let \( l \) denote the length of the angle bisector \( AD \) of \( \angle BAC \) where \( D \) is on the line segment \( BC \). Then \( 2l^2 \) equals: