Step 1: Splitting the integral
Rewriting:
\[
I = \int \frac{x^5}{x^2 + 1} dx.
\]
Splitting:
\[
I = \int x^3 \cdot \frac{x^2}{x^2 + 1} dx.
\]
Step 2: Using substitution
Let \( u = x^2 + 1 \), then \( du = 2x dx \). This simplifies the integral, leading to:
\[
I = \frac{x^4}{4} - \frac{x^2}{2} + \frac{1}{2} \log(x^2 + 1) + c.
\]