Step 1: Substituting in terms of tan
Rewriting in terms of \( \tan x \):
\[
I = \int \frac{\sin^6 x}{\cos^8 x} dx.
\]
Using \( \sin x = \tan x \cos x \), we get:
\[
I = \int \tan^6 x \sec^2 x dx.
\]
Step 2: Using substitution
Let \( u = \tan x \), then \( du = \sec^2 x dx \). The integral simplifies to:
\[
I = \int u^6 du.
\]
Step 3: Evaluating the integral
\[
I = \frac{u^7}{7} + c = \frac{\tan^7 x}{7} + c.
\]