To evaluate the integral \( \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \), we utilize symmetry and properties of trigonometric functions:
The function \(\sin x\) is symmetric around \(\frac{\pi}{2}\), and we can rewrite the integral as: \[ \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx = \int_0^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \] Adding these two integrals: \[ 2 \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx = \int_0^{\pi} \frac{\pi \sin x}{1 + \cos^2 x} \, dx \] \[ \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx = \frac{\pi}{2} \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx \] The integral of \(\frac{\sin x}{1 + \cos^2 x}\) over \(0\) to \(\pi\) simplifies to half the integral over \(0\) to \(2\pi\) due to the periodicity and properties of \(\cos x\).
This complete integral from \(0\) to \(2\pi\) is known to result in \(\pi\), thus: \[ \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx = \frac{\pi}{2} \] Therefore: \[ \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}. \]
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: